



Original Article

COGNITIVE LINGUISTICS AND NEUROPSYCHOLOGICAL DIMENSIONS OF THE SHIVA TANDAVA STOTRA

Dr. Deepti Navaratna ^{1*}

¹T.V. Raman Pai Chair Professor, School of Humanities, National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore 560012, India

ABSTRACT

The Shiva Tandava Stotra, attributed to Ravana, is one of the most rhythmically and phonetically complex hymns in Sanskrit literature. This manuscript explores the chant from the perspective of Cognitive linguistics, Gestalt psychology, and theories of linguistic perception. The central argument advanced here is that a chant of such linguistic and rhythmic complexity serves as a high-load cognitive training tool, engaging the phonological loop of working memory, augmenting vocal-based sensorimotor pathways, and strengthening neural networks involved in learning and memory. Evidence from recent neuroimaging studies on Vedic pandits, controlled chanting interventions, and psycholinguistic models of rhythm and working memory are integrated to support the thesis. We conclude that the Shiva Tandava Stotra exemplifies how traditional Sanskrit texts can be understood as cognitive technologies that enhance memory, focus, and embodied linguistic learning.

Keywords: Cognitive, Linguistics, Shiva Tandava Stotra

INTRODUCTION

The chanting of Sanskrit hymns has long been regarded not merely as a devotional exercise but as a cognitive, linguistic, and performative discipline. The Shiva Tandava Stotra is characterized by dense consonantal clusters, rapid phonetic alternations, and chandas structure, making it both a challenge and a training tool for the human cognitive-linguistic system. The present study explores the Śiva Tāṇḍava Stotra as a natural laboratory for investigating the interaction between language, memory, rhythm, and sensorimotor control.

The cognitive sciences have increasingly turned toward religious and artistic practices to understand how humans train memory and perception outside formal educational settings [McCauley and Lawson \(2002\)](#), [Hartzell \(2018\)](#). Chanting provides an especially rich case, as it integrates phonological, rhythmic, semantic, and motor dimensions. Recent advances in working memory theory [Baddeley \(1992\)](#), [Baddeley \(2000\)](#), cognitive load theory [Sweller \(1988\)](#), [Paas et al. \(2003\)](#), and sensorimotor learning [Shadmehr and Wise \(2005\)](#), [Dayan and Cohen \(2011\)](#) offer conceptual tools for understanding how complex chants function as both linguistic artifacts and cognitive training regimes.

Recent studies on chanting and mantra recitation suggest positive effects on attention regulation, stress reduction, and memory performance [Bernardi et al. \(2001\)](#), [Harne and Hiwale \(2018\)](#). Theoretical models propose that such practices augment sensorimotor integration, wherein auditory feedback and vocal motor commands interact to refine neural pathways [Shadmehr and Wise \(2005\)](#).

*Corresponding Author:

Email address: Dr. Deepti Navaratna (deepti.navaratna@nias.res.in)

Received: 07 November 2025; Accepted: 24 December 2025; Published 22 January 2026

DOI: [10.29121/Shodhgyan.v4.i1.2026.72](https://doi.org/10.29121/Shodhgyan.v4.i1.2026.72)

Page Number: 83-87

Journal Title: ShodhGyan-NU: Journal of Literature and Culture Studies

Journal Abbreviation: ShodhGyan.NU J. Lit. Cul. Stu.

Online ISSN: 2584-1300

Publisher: Granthaalayah Publications and Printers, India

Conflict of Interests: The authors declare that they have no competing interests.

Funding: Supported by a research grant from the Indian Knowledge Systems Initiative of the Ministry of Education.

Authors' Contributions: The author has written and contributed to the article in entirety

Transparency: The authors affirm that this manuscript presents an honest, accurate, and transparent account of the study. All essential aspects have been included, and any deviations from the original study plan have been clearly explained. The writing process strictly adhered to established ethical standards.

Copyright: © 2026 The Author(s). This work is licensed under a [Creative Commons Attribution 4.0 International License](#).

With the license CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.

Chanting the Śiva Tāṇḍava Stotra thus recruits episodic memory (recollecting prior recitations), semantic memory (meanings of words and verses), and procedural memory (motor patterns of articulation), offering a living case of [Tulving \(1972\)](#), [Tulving \(1985\)](#) multi-system model of memory.

This paper advances the thesis that the Śiva Tāṇḍava Stotra functions as a cognitively demanding chant that simultaneously trains working memory, enhances phonological processing, and strengthens sensorimotor learning pathways. By examining its linguistic structure, metrical organization, and psychological effects, we aim to demonstrate how this composition not only serves devotional purposes but also provides insights into the natural pedagogy of complex language use. The integration of cognitive load theory, working memory models, Gestalt psychology, and sensorimotor learning research provides a multi-disciplinary framework for understanding why such chants have endured as both spiritual and cognitive practices.

LITERATURE REVIEW

The Shiva Tandava Stotra's linguistic complexity is evident in its dense use of alliteration, consonantal clusters, and rhythmic cadence. For example, repeated syllabic patterns demand both precision and rapid motor execution, taxing the articulatory loop of working memory. Cognitive load theory [Sweller \(1988\)](#) suggests that such tasks increase intrinsic cognitive load, necessitating efficient chunking strategies. Gestalt grouping principles explain how chanters perceive rhythmic clusters as wholes rather than isolated phonemes, reducing processing burden. At the same time, the repetition of phonetic patterns serves as a mnemonic scaffold, facilitating long-term retention. By embedding linguistic units within rhythmic cycles, the STS enacts what can be termed 'metrical encoding,' aligning with evidence that rhythm and melody aid recall [Racette and Peretz \(2007\)](#).

Several empirical studies provide a foundation for this analysis. A controlled intervention study by [Sreenivasan \(2024\)](#) found that Vedic chanting significantly improved verbal working memory and sustained attention. Neuroimaging studies of Vedic Sanskrit pandits [Hartzell \(2018\)](#), [Hegde et al. \(2021\)](#) revealed increased grey matter volume and cortical thickness in brain regions implicated in memory and language, such as the hippocampus, thalamus, and frontal areas. This has been described popularly as the 'Sanskrit effect.' Additional studies show chanting produces measurable neurophysiological effects, including increases in alpha and theta brain wave activity, correlates of relaxation and attentional focus. Theories of embodied cognition [Barsalou \(2008\)](#), sensorimotor integration in speech [Pulvermüller \(2013\)](#), and rhythm-based learning [Goswami \(2011\)](#) suggest mechanisms through which chanting influences cognition. Together, these findings support the hypothesis that chanting metrically complex Sanskrit hymns such as the STS enhances working memory and vocal sensorimotor pathways.

THEORETICAL FRAMEWORK TO COGNITION OF CHANTS

Understanding the neurolinguistic impact of a chant requires a theoretical framework integrating philological, linguistic, and cognitive approaches. From a cognitive linguistic perspective, the chant is modeled as a high-load input to the phonological loop of working memory, requiring constant rehearsal and chunking. Gestalt psychological principles are invoked to explain how listeners and chanters perceive rhythmic groupings and patterns within the verse. From a neurocognitive standpoint, chanting is analyzed as a sensorimotor learning process engaging auditory, motor, and memory circuits. The convergence of these perspectives provides a multidisciplinary lens for understanding how the STS functions as a cognitive training tool.

CHANTING AS A COGNITIVE TASK - WORKING MEMORY AND EXECUTIVE FUNCTION

From a psycholinguistic perspective, chanting Sanskrit hymns is akin to performing high-load memory exercises. The phonological loop component of working memory is constantly engaged as the reciter holds and rehearses syllabic strings in real time [Baddeley \(1992\)](#). Moreover, the central executive must allocate attention, inhibit errors, and sequence utterances with temporal precision. This makes chanting not only a linguistic act but also a form of executive function training.

SANSKRIT GRAMMAR AND COGNITIVE CHALLENGES

The Śiva Tāṇḍava Stotra exploits these grammatical rules of Sanskrit to produce dense sandhi combinations and phonotactic clusters that challenge the articulatory apparatus. For example, sequences such as जयत्वद्भविभ्रम भ्रमद्वजंगमस्फुरद्व गद्वगद्विनिर्गमत्कराल भाल हव्यवाट् require rapid transitions across places of articulation, engaging fine-grained sensorimotor coordination. From the perspective of cognitive load theory, such complexity represents high intrinsic cognitive load, demanding strategies like chunking and rhythmic grouping for successful performance. The cognitive load theory recognizes that the total cognitive load is an interplay of how the stimulus is designed (intrinsic load), how and what type of a cognition it demands from the stimulus-responder (germane load) and the context in which this load is delivered (extrinsic).

CHANDAS AND RHYTHMIC STRUCTURING

The metrical basis of the Śiva Tāṇḍava Stotra—with its highly syllabic and repetitive cadence—provides a natural scaffold for memory. Prosodic structures serve as Gestalt groupings that reduce perceived complexity by organizing phonological material into rhythmic wholes. Sequences with rhyme and alliteration such as सरच्छिदं पुरच्छिदं भवच्छिदं मखच्छिदं गजच्छिदंधकच्छिदं तमंतकच्छिदं भजे although make memorization easier by reducing the germane load, the recall and accurate presentation in recitation requires a good command over implicit rhythm and awareness of alliterative shape by the reciter. Just as Gestalt principles of similarity and proximity help perception in vision, rhythmic repetition in chanting aids auditory grouping and recall [Wagemans et al. \(2012\)](#). This prosodic scaffolding transforms a potentially overwhelming linguistic load into a structured pattern manageable by the human working memory system.

SYLLABLE COMPOUNDING, ELEMENT ENTROPY AND INTRINSIC LOAD

The syllabic length is the first contributor to intrinsic load of the chant, greater the number of syllables/paada, the greater the intrinsic load overall. Yet large tracts of linguistic information could be chunked using scaffolds of rhyme, underlying laya of chant and musical information (svarita, udatta, anudatta and deergha svarita) that is employed in chanting recitatively. This balances the large intrinsic load that the chant itself poses. Greater the entropy between the word boundaries, the supra-segmental prosody, consonant-accent patterns of the prosody and implicit rhythm of the chant - the harder it is to cognitively scaffold and use the feed-forward predictive capacities of the brain to learn and acquire new information quickly. For example, while acquiring the section of the MahaSudarshana Mahamantra :ॐ नमो भगवते महासुदर्शनाय दीजे ज्वालापरीताय सर्वदिक्षोभणकराय हुँ फट् - the assymetry of length of words and the high intrinsic load of long words are easily chunked by distinct word boundaries. The lack of a perfect musical laya or implicit rhythm pattern in the mantra increases the cognitive load. In contrast, the Shiva Tandava Stotra has highly compounded syllables that appear irregularly across the metric structure but tightly fitting into the Chandas structure and creating an underlying laya of Tisra throughout. This decreases the overall cognitive load experienced despite a very high intrinsic load brought in by the complex syllables. The extrinsic load of STS is also high, due to the greater inbuilt entropy between the elements of chant: syllabic compounding, Chandas-frame, word accents and laya underneath. Thus, the Germane load of such a chant, the assimilation of information into easily recallable schemas of vocal-sensorimotor learning - is high and multi-schema as well. One has to remember and recall, linguistic, philological and musical aspects of the chanting - across many layered schemas and integrate it as a whole.

DISCUSSION

The analysis of the Śiva Tāṇḍava Stotra demonstrates how Sanskrit's prosodic sophistication and phonological density function not only as poetic devices but also as cognitive challenges that engage and train multiple learning systems.

THE STOTRA AS A HIGH-LOAD COGNITIVE TRAINING EXERCISE

The density of consonantal clusters and aspirated phonemes creates a natural intrinsic cognitive load [Sweller \(1988\)](#), [Paas and Van Merriënboer \(1994\)](#). Learners must engage the phonological loop [Baddeley and Hitch \(1974\)](#) at full capacity to maintain syllable accuracy while simultaneously tracking rhythm and semantics. Unlike typical spoken language, which uses prosody to ease load, the Stotra deliberately amplifies complexity.

This intentional difficulty functions analogously to desirable difficulties in cognitive psychology [Bjork \(1994\)](#): conditions that slow learning in the short term but enhance long-term retention and transfer. Chanting thus works as cognitive calisthenics, expanding the limits of verbal working memory.

INTERACTION OF MEMORY SYSTEMS

The Stotra engages multiple memory systems simultaneously. The Working memory holds sequences of syllables and meter in active focus. The Procedural memory automates articulatory and rhythmic sequences with repetition. Semantic memory encodes the symbolic meaning of Śiva's dance, cosmic imagery, and devotional themes. Episodic memory ties the chant to ritual contexts and personal devotional experiences. By integrating these systems, the Stotra fosters deep, multi-modal encoding. This aligns with levels-of-processing theory [Craik and Lockhart \(1972\)](#), where deeper semantic and sensory engagement yields more durable memory traces.

SENSORIMOTOR LEARNING AND NEURAL PLASTICITY

Chanting requires fine-grained sensorimotor coordination—control of respiration, timing, articulation, and auditory feedback. Studies on sensorimotor learning [Shadmehr and Wise \(2005\)](#), [Kleim and Jones \(2008\)](#) show that repeated practice strengthens motor pathways and enhances plasticity in auditory-motor integration circuits.

Thus, the Stotra is comparable to musical training [Wan and Schlaug \(2010\)](#), which has been shown to enlarge auditory and motor cortical regions, improve working memory, and enhance executive control. The overlap suggests that complex chanting may offer similar neurocognitive benefits, positioning it as a traditional analogue to modern cognitive training interventions.

COGNITIVE LOAD REDUCTION THROUGH CHANDAS

Although phonological density increases intrinsic load, chandas structure provides a powerful scaffolding mechanism. The Rhythmic regularity of chant reduces extraneous cognitive load by chunking syllables into predictable temporal units [Miller \(1956\)](#). The Gestalt grouping ensures perception of the chant as a holistic rhythmic form rather than fragmented syllables. Prosodic entrainment aligns articulatory and auditory systems, improving fluency and reducing error rates. This illustrates a balancing act: Sanskrit poetry simultaneously amplifies challenge and provides rhythm-based scaffolding, pushing the learner's cognitive system toward optimal load conditions [Paas et al. \(2003\)](#).

CHANTING AS A PATHWAY TO COGNITIVE FLOW

Extended practice of the Stotra can lead to flow states [Csikszentmihalyi \(1990\)](#), where cognitive challenge is balanced by skill. Practitioners report experiences of timelessness, heightened attention, and affective uplift. These states arise when working memory is maximally engaged without being overwhelmed—precisely the balance cultivated by the Stotra's combination of phonological difficulty and rhythmic scaffolding.

Thus, chanting functions as both cognitive training and affective regulation, aligning with findings that rhythmic vocalizations reduce stress and increase parasympathetic activity [Bernardi et al. \(2001\)](#).

COMPARATIVE IMPLICATIONS FOR LEARNING AND THERAPY

The principles uncovered here have broader applications:

- **Language learning:** Chanting could train phonological awareness and working memory in second-language acquisition.
- **Rehabilitation:** Rhythmic chanting may aid in speech therapy for aphasia or stuttering, similar to melodic intonation therapy.
- **Education:** Structured chanting can cultivate attention and memory in classroom contexts, especially for children.

The Śiva Tāṇḍava exemplifies how traditional cultural practices can inform evidence-based cognitive interventions, bridging ancient pedagogy with modern neuroscience.

ACKNOWLEDGMENTS

None.

REFERENCES

Baddeley, A. D. (1992). Working Memory. *Science*, 255(5044), 556–559. <https://doi.org/10.1126/science.1736359>

Baddeley, A. D. (2000). The Episodic Buffer: A New Component of Working Memory? *Trends in Cognitive Sciences*, 4(11), 417–423. <https://doi.org/10.1016/S1364-6613%2800%2901538-2>

Baddeley, A. D., and Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), *Psychology of Learning and Motivation* (Vol. 8, 47–89). Academic Press. <https://doi.org/10.1016/S0079-7421%2808%2960452-1>

Cardona, G. (1999). *Panini: A Survey of Research*. Motilal Banarsi Dass.

Craik, F. I. M., and Lockhart, R. S. (1972). Levels of Processing: A Framework for Memory Research. *Journal of Verbal Learning and Verbal Behavior*, 11(6), 671–684. <https://doi.org/10.1016/S0022-5371%2872%2980001-X>

Craik, F. I. M., and Tulving, E. (1975). Depth of Processing and the Retention of Words in Episodic Memory. *Journal of Experimental Psychology: General*, 104(3), 268–294. <https://doi.org/10.1037/0096-3445.104.3.268>

Dayan, E., and Cohen, L. G. (2011). Neuroplasticity Subserving Motor Skill Learning. *Neuron*, 72(3), 443–454. <https://doi.org/10.1016/j.neuron.2011.10.008>

Gentner, D. (2010). Bootstrapping the Mind: Analogical Processes and Symbol Systems. *Cognitive Science*, 34(5), 752–775. <https://doi.org/10.1111/j.1551-6709.2010.01114.x>

Gupta, R. S. (1980). *Studies in Sanskrit Syntax*. Motilal Banarsi Dass.

Kiparsky, P. (1979). Pāṇini as a Variationist. In D. Dinnsen (Ed.), *Current Approaches to Phonological Theory* (3–45). Indiana University Press.

Kleim, J. A., and Jones, T. A. (2008). Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation After Brain Damage. *Journal of Speech, Language, and Hearing Research*, 51(1), S225-S239. <https://doi.org/10.1044/1092-4388%282008%29>

Mayer, R. E., and Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in Multimedia Learning. *Educational Psychologist*, 38(1), 43-52. https://doi.org/10.1207/S15326985EP3801_6

Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive Load Theory and Instructional Design: Recent Developments. *Educational Psychologist*, 38(1), 1-4. https://doi.org/10.1207/S15326985EP3801_1

Schneider, W., and Shiffrin, R. M. (1977). Controlled and Automatic Human Information Processing: I. Detection, Search, and Attention. *Psychological Review*, 84(1), 1-66. <https://doi.org/10.1037/0033-295X.84.1.1>

Shadmehr, R., and Wise, S. P. (2005). The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. MIT Press.

Shiffrin, R. M., and Atkinson, R. C. (1969). Storage and Retrieval Processes in Long-Term Memory. *Psychological Review*, 76(2), 179-193. <https://doi.org/10.1037/h0027277>

Tulving, E. (1972). Episodic and Semantic Memory. In E. Tulving and W. Donaldson (Eds.), *Organization of Memory* (381-403). Academic Press.

Tulving, E. (1985). Memory and Consciousness. *Canadian Psychology/Psychologie Canadienne*, 26(1), 1-12. <https://doi.org/10.1037/h0080017>